sdeconv.psfs.SPSFGibsonLanni#
- class sdeconv.psfs.SPSFGibsonLanni(shape: tuple[int, int] | tuple[int, int, int], NA: float = 1.4, wavelength: float = 0.61, M: float = 100, ns: float = 1.33, ng0: float = 1.5, ng: float = 1.5, ni0: float = 1.5, ni: float = 1.5, ti0: float = 150, tg0: float = 170, tg: float = 170, res_lateral: float = 0.1, res_axial: float = 0.25, pZ: float = 0, use_square: bool = False)#
Generate a Gibson-Lanni PSF
- Parameters:
shape – Size of the PSF array in each dimension [(Z), Y, X],
NA – Numerical aperture,
wavelength – Wavelength in microns,
M – Magnification,
ns – Specimen refractive index (RI),
ng0 – Coverslip RI design value,
ng – Coverslip RI experimental value,
ni0 – Immersion medium RI design value,
ni – Immersion medium RI experimental value,
ti0 – microns, working distance (immersion medium thickness) design value,
tg0 – microns, coverslip thickness design value,
tg – microns, coverslip thickness experimental value,
res_lateral – Lateral resolution in microns,
res_axial – Axial resolution in microns,
pZ – microns, particle distance from coverslip
use_square – If true, calculate the square of the Gibson-Lanni model to simulate a pinhole. It then gives a PSF for a confocal image
- __init__(shape: tuple[int, int] | tuple[int, int, int], NA: float = 1.4, wavelength: float = 0.61, M: float = 100, ns: float = 1.33, ng0: float = 1.5, ng: float = 1.5, ni0: float = 1.5, ni: float = 1.5, ti0: float = 150, tg0: float = 170, tg: float = 170, res_lateral: float = 0.1, res_axial: float = 0.25, pZ: float = 0, use_square: bool = False)#
Methods
__init__
(shape[, NA, wavelength, M, ns, ...])add_observer
(observer)Add an observer
notify
(message)Notify progress to observers
progress
(value)Notify progress to observers