References

References#

References

[Siba05]

Sibarita, J.-B. Deconvolution Microscopy 201-243 (Springer Berlin Heidelberg, Berlin Heidelberg, 2005). https://doi.org/10.1007/b102215

[Rich72]

Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55-59 (1972).

[Lucy74]

Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745-754 (1974).

[VdSt95]

Van Der Voort, H. T. M. & Strasters, K. C. Restoration of confocal images for quantitative image analysis. J. Microsc. 178, 165-181. https://doi.org/10.1111/j.1365-2818.1995.tb03593.x (1995).

[VkVB96]

van Kempen, G. M. P., van der Voort, H. T. M., Bauman, J. G. J. & Strasters, K. C. Comparing maximum likelihood estimation and constrained Tikhonov-Miller restoration. IEEE Engineering in Medicine and Biology Magazine 15, 76-83 (1996).

[VkVV97]

van Kempen, G. M. P., van Vliet, L. J., Verveer, P. J. & van der Voort, H. T. M. A quantitative comparison of image restoration methods for confocal microscopy. J. Microscopy 185, 354-365. https://doi.org/10.1046/j.1365-2818.1997.d01-629.x (1997).

[PNLV22]

Prigent, S., Nguyen, HN., Leconte, L. et al. SPITFIR(e): a supermaneuverable algorithm for fast denoising and deconvolution of 3D fluorescence microscopy images and videos. Sci Rep 13, 1489 (2023). https://doi.org/10.1038/s41598-022-26178-y

[KrBF19]

Krull, A., Buchholz, T-O, Jug, F. Noise2Void - Learning Denoising From Single Noisy Images. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Jine, 2019